f-vectors of random polytopes

نویسندگان

  • Olivier Devillers
  • Marc Glisse
  • Xavier Goaoc
  • Guillaume Moroz
  • Matthias Reitzner
چکیده

Let K be a compact convex body in R, let Kn be the convex hull of n points chosen uniformly and independently in K, and let fipKnq denote the number of i-dimensional faces of Kn. We show that for planar convex sets, Erf0pKnqs is increasing in n. In dimension d ě 3 we prove that if limnÑ8 Erfd ́1pKnqs An “ 1 for some constants A and c ą 0 then the function n ÞÑ Erfd ́1pKnqs is increasing for n large enough. In particular, the number of facets of the convex hull of n random points distributed uniformly and independently in a smooth compact convex body is asymptotically increasing. Our proof relies on a random sampling argument. Key-words: Computational geometry, Stochastic geometry, Convex hull, Complexity . Part of this work is supported by: ANR blanc PRESAGE (ANR-11-BS02-003) ̊ Projet Geometrica, INRIA Sophia Antipolis Méditerranée : Projet Geometrica, INRIA Saclay Île de France ; Projet Vegas, INRIA Nancy Grand Est § Projet Vegas, INRIA Nancy Grand Est ¶ Institut für Mathematik, Universität Osnabrück, 49069 Osnabrück, Germany. ha l-0 07 58 68 6, v er si on 1 29 N ov 2 01 2 Monotonie des f-vecteurs de polytopes aléatoires Résumé : Soit K un domaine convexe et compact de R, Kn l’enveloppe convexe de n points choisis uniformément et indépendamment dans K, et fipKnq le nombre de faces de Kn de dimension i. Nous montrons que pour des convexes du plan, Erf0pKnqs est croissant avec n. En dimension d ě 3 nous montrons que si limnÑ8 Erfd ́1pKnqs An “ 1 pour des constantes A et c ą 0 alors la fonction n ÞÑ Erfd ́1pKnqs est croissante pour n suffisamment grand. En particulier, le nombre de facettes de l’enveloppe convexe de n points aléatoires distribués uniformément et indépendamment dans un convexe compact à bord lisse est asymptotiquement croissant. Notre démonstration utilise un argument d’échantillonnage aléatoire. Mots-clés : Géométrie algorithmique, Géométrie stochastique, Enveloppe convexe, Complexité. ha l-0 07 58 68 6, v er si on 1 29 N ov 2 01 2 The monotonicity of f -vectors of random polytopes 3

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Banach-Mazur Distances and Projections on Random Subgaussian Polytopes

We consider polytopes in Rn that are generated by N vectors in Rn whose coordinates are independent subgaussian random variables. (A particular case of such polytopes are symmetric random ±1 polytopes generated by N independent vertices of the unit cube.) We show that for a random pair of such polytopes the Banach-Mazur distance between them is essentially of a maximal order n. This result is a...

متن کامل

A Generalized Sewing Construction for Polytopes

Two major combinatorial problems are to characterize the f -vectors and flag f -vectors of convex d-polytopes. For 3-polytopes these problems were solved by Steinitz [24, 25] nearly a century ago. They also were solved for the class of simplicial polytopes by Stanley [23] and Billera and Lee [10] more than 25 years ago. For d ≥ 4, however, the problems of characterizing the f -vectors and flag ...

متن کامل

Convex Polytopes: Extremal Constructions and f -Vector Shapes

These lecture notes treat some current aspects of two closely interrelated topics from the theory of convex polytopes: the shapes of f -vectors, and extremal constructions. The study of f -vectors has had huge successes in the last forty years. The most fundamental one is undoubtedly the “g-theorem,” conjectured by McMullen in 1971 and proved by Billera & Lee and Stanley in 1980, which characte...

متن کامل

Stability Properties of Neighbourly Random Polytopes

We introduce a quantitative parameter measuring m-neighbourliness of symmetric convex polytopes in R . We discuss this parameter for random polytopes generated by subgaussian vectors and show its stability properties.

متن کامل

The cd-index of zonotopes and arrangements

We investigate a special class of polytopes, the zonotopes, and show that their flag f -vectors satisfy only the affine relations fulfilled by flag f -vectors of all polytopes. In addition, we determine the lattice spanned by flag f -vectors of zonotopes. By duality, these results apply as well to the flag f -vectors of central arrangements of hyperplanes.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012